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i 1 00 oN. 1.1 ¢ oN
A }_/Ni .—a;l.dxdy =[/ Ni.<-a—xi> . dx dy . (40) :
o Jo o Jo 1s

reduced

A contributing term to [B ] is the integration of

/] Ni.cos;y.dxdy. (41)
0°0

Clearly a least-squares fit of cos g-.y of the form given by equation (36)

will not necessarily coincide with the values of cos g-.y at the sampling

points of a 2 x 2 Gauss quadrature formula. If the right hand side of
the governing equation (32a) were a polynomial of second order or less
then the solutions from the least-squares fit of the residual and from the
use of reduced integration would be identical.

T s e s e

4.5 Incompressible, inviscid flow

The final example to be considered is that of incompressible, inviscid
flow past a two-dimensional circular cylinder; the flow-field is shown in

Figure 3.
) viv
UG
— %
FREE STREAM
CONDITIONS
x,u
c ;
|

Figure 3. Flow field geometry for two-dimensional inviscid,
incompressible flow

This example is more complex than those considered previously because the ‘
flow-field is represented by many elements and an isoparametric formulation
is used to fit the curved nature of the body. However this problem, like
the previous examples, possesses an exact solution sc that direct comparison g
of various formulations is possible. This problem has been used previously
to obtain a systematic comparison of various elements and shape functions
for both exact and reduced integration(refs.9,15).

Results will be presented here that compare the least-squares fitting of .
the residual with exact and reduced integration for quadratic rectangular
and triangular elements and two alternative Galerkin formulations.

The governing cquations, for inviscid incompressible flow in two dimensions,

arc taken to be

du . 2
'5;’:'*'5%‘ 0 (42)




R VP RME TR AT

e

- 8 - WRE-TM~1827(W)

and

5 "5 0 (43)

The Galerkin finite element formulation proceeds by introducing the following
representation for u and v

= N. . u 44a
8 By )
j
and
oyl eV 44b
v ZJ o (44b)
j
and requiring that
]Y Ni ‘ Rk .dxdy = 0,k = 1,2andi =1,n . (45)

In equations (44) and (45),

p P .th
Ni is the shape function at the i  node,

E}, ;5 are the nodal values of the velocity components, u and v,

and n is the total number of active nodes.
The residuals, Rk’ are obtained by substituting equations (44) into equations

(42) and (43), the result is

B
R,.=Z—a;1.uj+za—yl.vj (46a)
j j
N, _ N, _
and R, = jg: 3;3 L Uy - 5;1 “ V5 (46b)
j j

Substitution of equations (46) into equations (45) and rearrangement gives

LT+ ) bV, o= i = 1,n (47
j j

e Zbij s 13 Z“ij Y3 2 0,4 & 1,8, (48)
j j

A fuller description of the derivation of equations (47) and (48) is given
elsewhere(ref.15).
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The first set of results to be presented have been obtained with quadratic,
Serendipity, rectangular elements, The form of a,, and b,, in equations (47)

ij ij
and (48) depend on whether Green's theorem has been applied. Two cases will
be considered:
Case 1: Green's theorem applied to the Galerkin equations

. N
&5 = [[ 2 Ny .dxdy- [N .N .1 . ds (49)
| %
aN,
d bis bl el M 5 TR AR
an i H o Nj . dx dy [Nl g1, . ds, (50)

The line integrals can only contribute if the ith node lies on the boundary
and even then may produce zero contribution due to the boundary conditions

or the values of the direction cosines, 1x and ly. For an isoparametric
formulation used with rectangular elements the integrations in equations (49)
and (50) are carried out in the plane of a regular rectangular element based

on a §{,7 coordinate system. The result is, for the area integrals,

8
: . /3N, N, AN, ON
& willoy Z e ML SR SR e (51)
” ./4 4 38 op on  of
k=1
; ~ /an, aNk AN, 8Nk
and b, = N. L Ay SUUSEN | ) cx bodE L dn (52)
r J 3 dam A ok
k=1

X Y are thc coordinates of the kth node in the element.

Case 2: Green's theorem not applied to the Galerkin equations

3N,
A, = N, . —3 dx dy (53)
*) 3 ax
" aN,
b.,., = N, o ol Oy, (54)
1] j 1 ay

For an isoparametric formulation with rectangular elements equations (53) and
(54) become

B, /. N, AN, N
a,, = N, Z A [N SR L [ S O T (55)
t : a¢ an on ot

k=1

and b, --/[N. Sk b BN P g Cx podk L . (56)
i : & o o B
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In equations (51), (52), (55) and (56) it is possible to identify those
parts of the equation that come from the residual and those parts that come

from the weight function in equation (45). Once the element and shape
function are chosen it is possible to deduce the order of the contributions
to the weight function and residual., The results of this are shown in

Table 5 and will be made use of in the discussion of the solutions.

TABLE 5. ORIGIN AND ORDER OF EQUATIONS (51), (52),

(55), (56) and (60) TO (63)

Cxaan's Weight function Residual
Element| theorem Order Order
type applied Terms from of Terms from of
aN, AN, N, N |.. L S
Rect- | YEs |—+ —K _—i _k|bi- j s
angular ot ‘on n a¢ | cubic ratic
quad-
ratic bi- oN, aNk oN, aNk bi-
element| NO N, quad- [ —4 = -1 — | .
ratic | 9 on on ot
we L E b : s
Rect- ; & $ 2
angular oy 3l - A 3L ratic J ratic
3::‘:; bi- | aN, @N _aN, N, |Di-
element| NO N quad- s SRR Rt B quad-
ratic| OL, oL, 0L, 0L | ratic

The computational solutions, considered under Example S, have been
obtained within the region ABCD in Figure 3. The nodal points and the
elements have been defined on a polar grid and an isoparametric formulation
has been used to connect this to a cartesian grid. All results presented
are for the variation, with angular position, of the tangential velocity
component at the body surface.

A root mean square difference, 0, between the finite element solution
and the exact solution at the body surface is defined as follows

N k]

o = zgi (ap - qe)2 INg ’ (57)

i=1

where ar is the finite element solution for the tangential velocity compon-
ent, is the exact solution for the tangential velocity component and N
9% B

is the number of nodes between § = 0 and 90° (B and C in Figure 3). 0 has
been found useful for comparing results in tabulated form. A summarv of
the results, for the various cases considered under Example 5, is given in

Table 6.

e

S ST—
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TABLE 6. SUMMARY OF SOLUTIONS FOR INVISCID, INCOMPRESSIBLE FLOW
ABOUT A CIRCULAR CYLINDER
Element Green's | Number Number Nodal R.M.S, differences
type theorem | of of Exact Exact Least-
applied | elements | unknowns | numerical numerical squares
integration | integration| fit of
residual
Quadratic YES 25 149 0.049 0.015 0.040
rectangular
(Serendipity)| NO 25 149 0.062 - 0.087
Quadratic YES 50 199 0.126 0.063 0.059
TeCEEE | w 50 199 0.252 0.481 0.018

The first group of results were obtained with 25 quadratic, Serendipity,
rectangular elements spanning the flow-field.

unknowns to be solved for.

the results are shown in Figure 4.

This required 149 nodal
For case 1, in which Green's theorem is applied,
Results have been obtained for exact

numerical integration, reduced numerical integration and for a bilinear
least-squares fit of the residual.

Figure 4,

22
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Comparison of surface velocities - rectangular elements -
Green's theorem applied
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It is apparent that the results for reduced integration are better than
those produced by a least-squares fit of the residual, and that both are
better than the results using exact numerical integration. In obtaining
the solution using reduced integration, integrals of the form

i S S § ST (58)

’ ON. oN oN oN
[[N.{ — . :
f/ il “am an oot

are evaluated using a 2 x 2 Gauss quadrature formula. A 2 x 2 Gauss quad-
rature formula is capable of integrating a bicubic integrand exactly; the

integrand in expression (58) is biquintic. Referring to Table 5 it can_be
seen that Nj’ which comes from the residual is biquadratic and the term >

which comes from an isoparametric transformation of the weight function,
is bicubic.
Sampling Nj at the second order Gauss points is equivalent to replacing

N. by a bilinear least-squares fit of N, (ref.14). Therefore sampling the

term in expression (58) at the second-order Gauss points may be inter-
preted as fitting the term with a biquadratic or bilinear function that

matches the original function at the sampling points.
In contrast with this the 'least-squares fit of the residual' results
have replaced Nj in expression (58) by a least-squares fit but have left

the term , that comes from the weight function, in its original form.

This has necessitated the use of a 3 x 3 Gauss quadrature formula. Thus
the differences in the reduced integration solution and the ''least-squares
fit of the residual" solution arise from the different treatment of the
weight function. Why the reduced integration treatment of the weight
function should produce superior results is not clear.

For case 2, in which Green's theorem is not applied to the Galerkin
equations, the results are shown in Figure 5. The use of reduced integration
failed to produce a result and the least-squares fit of the residual has
produced a result that is inferior to that produced by exact numerical inte-
gration.

For this case it is necessary to carry out integrations of the form

s, SR e | k Ldt . oan . (59)

f ON. ON ON., ON
j/ﬁ il " m "

Reference to Table 5 indicates that the termg. in expression (59) con-

tributes to the residual. This term is bicubic and therefore a least-
squares fit of this term will need to be biquadratic. However this

requires nine unknown coefficients which is as many as is required to define
the overall integration exactly. In terms of the required inequality (7) M
is not reduced. Thus a biquadratic fit, in this case, violates the original
requirement of reducing the number of constraints on the residual. The
results in Figure 5 give some idea of the error in replacing the residual
with its least-squares fit when no gain is obtained from a reduction in the
number of constraints.
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22,
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Figure 5, Comparison of surface velocities - rectangular elements -
Green's theorem not applied

An attempt at a reduced integration solutien implies an attempt to replace

the bicubic residual term with either a bilinear or biquadratic fit of the
residual term whose values at the 2 x 2 Gauss points match the original

residual term. Clearly neither possibility has the required least-squares

property of minimising the square of the residual.
The second group of results were obtained with 50 quadratic triangular

elements spanning the flow-field. A solution has been sought for 199 nodal
unknowns. Once an isoparametric transformation, in terms of the triangular

coordinates L;, L, has been applied to equations (49), (50), (53) and (54)
the relevant expressions for aij and bij are:

Case 1: Green's theorem applied to the Galerkin equations

e ,.j. " i(aui ‘aNk_aNi ank> W
| S j Oy . AN, 3, . 3L k )
k=1
and
8 N, AN AN, AN
S B e R e R

k=1
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Case 2: Green's theorem not applied to the Galerkin equations

v / ON SN ON oN
8y, .ﬂ Ny i r e T SN CYp 4l dl (62)
J oL, dL; 9L, 9L,

and

8 [ an. N, AN, N
b, = -f[ N Z J il . X ar, . dla. (63)
k=1

In equations (60) to (63) it is possible to identify which parts of the
equations come from the weight function and which parts come from the
residual in equation (45). This information is given in Table 5 along with
the order of the various terms in equations (60) to (63).

For case 1 above the results are shown in Figure 6. Results are
presented for exact numerical integration, for reduced numerical integration
and for a least-squares fit of the residual of the following form

RIS = a +a .L +a . L. (64)

A seven point formula was used to produce the exact numerical integration
results and a four point formula, due to Cowper(ref.16), was used to produce
the reduced integration results; these quadrature formulae are described
elsewhere (ref.7).

22
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Figure 6. Comparison of surface velocities -~ triangular elements -

Green's theorem applied g
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The ''least-squares fit of the residual" results are better than the
reduced integration results and both are better than the exact integration
results (see Table 6 also). It is interesting that the reduced integration
results have required four evaluations of the residual per element whereas
the '"least-squares fit of the residual' results have required only three
parameters per element. Thus, in terms of the inequality (7), the number
of unknowns n is 199 for both cases. The total number of function evalua-
tions, M, for reduced integration is 400 and for the least-squares fit of
the residual is equivalent to 300. Examination of Table 5 indicates that
Nj in equation (60) and (61) is biquadratic so that a least-squares fit that

B —

Ny

is linear in L; and L, would appear appropriate.

The results for case 2, when Green's theorem is not applied, are shown
in Figure 7. For this case the results using exact integration are poor
and the results using reduced integration are worse. But the results '
using a least-squares fit of the residual are very good, virtually as good
as the best reduced integration results obtained for this probem (Figure 4).

22
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Figure 7. Comparison of surface velocities - triangular elements -
Green's theorem not applied

The least-squares fit of the residual was of the form

Rls = @ +a L +a . .lh+ta .L .1, (65)

The term in equations (62) and (63) that contributes to the residual is
listed in Table 5 and is quadratic in L; and ;.

The relatively poor showing of reduced integration applied to triangular
elements may be attributed to the fact that the lower order numerical inte-
gration formula used has no least-squares interpretation as has the corres-
ponding Gaussian quadrature formula(ref.14) used with rectangular elements.
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5.  DISCUSSION

Least-squares fitting has beer used previously in finite element formulation.
In the area of plate bending, Irons and Tazzaque(ref.17,18) have started with
9 and 12 degree of freedom triangular elements and replaced the second
derivative of the shape function by its least-squares fit. This has allowed
the use of a lower order numerical integration formula and produced superior
results to the elements they started with,

Hinton and Campbell(ref.19) have used local and global smoothing in order
to improve stresses obtained from numerically integrated, two dimensional,
isoparametric elements. Hinton and Campbell note that, for rectangular,
quadratic elements the evaluation of the stiffness integral

// BT .D.B.dA (66)

by reduced integration (2 x 2 Gauss quadrature formula) produces the same
result as performing the exact integration of

[[ E g . E . E . dA (67)

where ~ indicates a local least-squares fit of that term. Since each least-
squares fit is bilinear, the integrand of expression (67) is bicubic and can
be integrated exactly by a 2 x 2 Gauss quadrature formula. The integrand is
of the same order as that produced when expression (58) is replaced by

ON. aNk ON. aNk
N, T . & . dan. (68)
J1s ok on on o

It is apparent from previous applications, and from the results presented
in this paper, that reduced integration has produced superior results to the
use of exact integration for rectangular elements but has not been effective
for triangular elements.

An important step in the formulation, presented here as an alternative
to reduced integration, has been to recognise that if the residual is
written

R = Ry (o) « &, (69)
J )
j=1
where ES are the nodal parameters and Rj(x,y) are made up of shape function

derivatives, etc. determined by the governing equations, then it follows that

L

R15 = > Rj : (x,y) . qj § (70)
[ 1s
j=1

Equation (70) is particularly useful since it is straightforward to form R.
A

on an element basis. If the numerical integrations are performed on a dummy

element, once and for all(ref.15), the formation and evaulation of R, is

: 1s
also economical.

g
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It has been demonstrated that the use of a modified method of weighted
residuals

i [
[ W . Rls .dA = O (71)

has produced more accurate results than the use of

[f W.R.dA = O (72)

in a larger number of situations than has the use of reduced integration
applied to equation (72). 1In particular the current formulation has extended
the benefits associated with reduced integration to triangular elements.

It seems likely that, where reduced integration produces very accurate
results, the increased accuracy over the use of equation (71) comes from the
implicit treatment of the weight function, W. This would appear to be a
fruitful area for future research.
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